توسعه مشتری‌محور کودهای ان‌پی‌کی جدید با استفاده از داده کاوی (مورد مطالعه: تعاونی‌های کشاورزی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت صنعتی / دانشکده مدیریت، اقتصاد و حسابداری / دانشگاه یزد / یزد / ایران.

2 دانشیار گروه مدیریت صنعتی دانشکده اقتصاد و مدیریت دانشگاه یزد، یزد، ایران

3 گروه مدیریت صنعتی، دانشگاه یزد، یزد، ایران.

4 گروه آموزش مدیریت صنعتی، دانشگاه یزد، یزد، ایران

چکیده

پژوهش حاضر با هدف ارائه رویکرد مبتنی بر داده‌کاوی درزمینه توسعه مشتری‌محور محصولات جدید و با تمرکز بر یک نوع کود کشاورزی صورت گرفته است. مشکل مد نظر در این پژوهش ناشی از حجم و تنوع بالای تقاضای مشتریان از یک طرف و از طرف دیگر محدودیت تعاونی‌های کشاورزی در تنوع کودهای قابل عرضه بوده است. بر همین اساس، ابتدا داده‌های مربوط به نیازها و اولویت‌های واقعی مشتریان از نظر نوع کود، قیمت و زمان خرید با استفاده از ابزارهای نظرسنجی جمع‌آوری و سپس بر اساس الگوریتم کریسپ در داده‌کاوی، تجزیه‌وتحلیل گردید. در گام اول از تجزیه‌وتحلیل داده‌ها و به منظور توسعه مشتری‌محور محصولات جدید، از روش خوشه‌بندی استفاده و به موجب آن تنوع کودهای معرفی شده از سمت مشتریان از 37 نوع به 5 نوع کاهش یافت؛ به‌گونه‌ای که ویژگی محصولات جدید نزدیکی بسیاری به نیازهای اغلب مشتریان داشت. سپس، با استفاده از روش درخت تصمیم‌گیری پیش‌بینی کیفیت مورد نظر برای هر محصول جدید در بازه‌های زمانی متفاوت انجام و بر اساس آن الگوی تامین و تولید محصولات با توجه به تمایل و تقاضای مشتریان در هر فصل فراهم شد. در کل و با توجه به نتایج به‌ دست‌ آمده می‌شود گفت که استفاده از داده‌کاوی می‌تواند در توسعه محصولات جدید به‌ صورت مشتری محور مفید واقع شود و این رویکرد قادر است تا نسبت به مسائلی همچون مدیریت تنوع داده‌ها و همچنین برنامه‌ریزی‌های مدیریت زنجیره تأمین مشتری‌محور نیز پاسخگو باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Customer-Oriented development of NPK fertilizers using data mining (Case Study: Agricultural Cooperatives)

نویسندگان [English]

  • Mohammad Baharlouei 1
  • Seyed Heidar Mir Fakhreddini 2
  • Seyed Mahmood Zanjirchi 3
  • Habib Zare Ahmadabadi 4
1 Industrial Management Department / Management, Economic and accounting faculty, Yazd University, Yazd, Iran.
2 Associate Prof. in Industrial Management, Faculty of Economics and Management, of Yazd University, Yazd, Iran
3 Department of industrial management, Yazd University, Yazd, Iran.
4 Department of Industrial Management, Yazd University, Yazd, Iran.
چکیده [English]

The current study aims to provide a data mining approach to customer-oriented development of new products with a focus on one type of fertilizer. The problem considered in this study was due to the high volume and variety of customer demand on the one hand and the limitation of agricultural cooperatives in the variety of available fertilizers on the other hand. Accordingly, the data related to the real needs and priorities of customers in terms of fertilizer type, price, and purchase time were collected using survey tools firstly, and then analyzed based on the CRISP algorithm in data mining. In the first step of data analysis and in order to develop customer-oriented new products, the clustering method was used and thus the variety of fertilizers introduced by customers was reduced from 37 to 5; In a way, the features of the new products were very close to the needs of most customers. Then, using the decision tree method, the desired quality forecast was done for each new product in different time periods and based on, the supply and production pattern of products was provided according to the desire and demand of customers in each season. In general, and according to the results obtained, it can be said that the use of data mining can be useful in the development of new products in a customer-oriented way and this approach is able to respond to issues such as data diversity management as well as customer-centric supply chain management planning.

کلیدواژه‌ها [English]

  • New Product Development
  • Supply Chain
  • Customer-Oriented Development
  • Data Mining
  • Agricultural Cooperatives
Akgül, E., Özmen, M., Sinanoğlu, C., & Kizilkaya Aydoğan, E. (2020).
Rough Kansei mining model for market-oriented product design.
Mathematical Problems in Engineering, 2020, 1-11.
Alkahtani, M., Choudhary, A., De, A., & Harding, J.A. (2019). A
decision support system based on ontology and data mining to
improve design using warranty data. Computers & Industrial
Engineering, 128, 1027-1039 .
Alli, H. (2018). User involvement method in the early stage of new
product development process for successful product. Alam Cipta:
International Journal of Sustainable Tropical Design Research and
Practice, 11(1), 23-28 .
Alp, S., & Öz, E. (2020). Customer Oriented Product Design with
Conjoint Analysis. In Customer Oriented Product Design (pp. 401-
415). Springer, Cham.
 Alsagheer, R.H., Alharan, A.F., & Al-Haboobi, A.S. (2017). Popular
decision tree algorithms of data mining techniques: a reviewInternational Journal of Computer Science and Mobile Computing,
6(6), 133-142 .
Büyüközkan, G., Güler, M., & Mukul, E. (2020). An integrated fuzzy
QFD Methodology for Customer Oriented Multifunctional Power
Bank Design Customer Oriented Product Design (pp. 73-91):
Springer.
Cebi, S., & Kahraman, C. (2020). Customer Oriented Product Design and
Intelligence Customer Oriented Product Design (pp. 3-20):
Springer, Cham.
Chien, C.-F., Kerh, R., Lin, K.-Y., & Yu, A. P.-I. (2016). Data-driven
innovation to capture user-experience product design: an empirical
study for notebook visual aesthetics design. Computers &
Industrial Engineering, 99, 162-173 .
Cooper, R.G. (2019). The drivers of success in new-product
development. Industrial Marketing Management, 76, 36-47 .
Dou, R., Li, W., & Nan, G. (2019). An integrated approach for dynamic
customer requirement identification for product development.
Enterprise Information Systems, 13(4), 448-466 .
Erdoğan, M., & Blisik, Ö.N. (2020). Prioritizing the factors for customeroriented new product design in industry 4.0. Sakarya Üniversitesi
Fen Bilimleri Enstitüsü Dergisi, 24(4), 751-769 . Feng, Y., Zhao, Y., Zheng, H., Li, Z., & Tan, J. (2020). Data-driven
product design toward intelligent manufacturing: a review.
International Journal of Advanced Robotic Systems, 17(2), 1-18.
Gangurde, S. (2020). Application of MADM Techniques to Develop
Customer Oriented Product Customer Oriented Product Design (pp.
253-281): Springer, Cham.
Gotzamani, K., Georgiou, A., Andronikidis, A., & Kamvysi, K. (2018).
Introducing multivariate Markov modeling within QFD to
anticipate future customer preferences in product design.
International Journal of Quality & Reliability Management, 35(3),
762-778.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and
techniques third edition. The Morgan Kaufmann Series in Data
Management Systems, 5(4), 83-124.
Hochdörffer, J., Laule, C., & Lanza, G. (2017). Product variety
management using data-mining methods—reducing planning
complexity by applying clustering analysis on product portfolios.
Paper presented at the 2017 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM).
Hoyer, W.D., Chandy, R., Dorotic, M., Krafft, M., & Singh, S.S. (2010).
Consumer cocreation in new product development. Journal of
Service Research, 13(3), 283-296 . Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME:
Data mining methodology for engineering applications–a holistic
extension to the CRISP-DM model. Procedia Cirp, 79, 403-408 .
Iaksch, J.S., Borsato, M., Schimdt, J., & Vaine, A. (2019). Requirements
engineering in the new product development process: a structured
literature review. Journal of Industrial Integration and
Management, 4(1),1-18.
Kahraman, C., Gündoğdu, F.K., Karaşan, A., & Boltürk, E. (2020).
Advanced fuzzy sets and multicriteria decision making on product
development. In Customer Oriented Product Design (pp. 283-302).
Springer, Cham.
Kang, X., Porter, C.S., & Bohemia, E. (2020). Using the fuzzy weighted
association rule mining approach to develop a customer satisfaction
product form. Journal of Intelligent & Fuzzy Systems(Preprint),
38(4), 4343-4357.
Kodinariya, T.M., & Makwana, P.R. (2013). Review on determining
number of cluster in K-Means clustering. International Journal of
Advance Research in Computer Science and Management Studies,
1(6), 90-95.
Li, B.-R., Wang, Y., & Wang, K.-S. (2017). A novel method for the
evaluation of fashion product design based on data mining.
Advances in Manufacturing, 5(4), 370-376 .Liu, A., Zhu, Q., Ji, X., Lu, H., & Tsai, S.-B. (2018). Novel method for
perceiving key requirements of customer collaboration low-carbon
product design. International Journal of Environmental Research
and Public Health, 15(7), 14-46 .
Madhani, P.M. (2020). Customer-focused supply chain strategy:
developing 4Rs framework for enhancing competitive advantages.
International Journal of Services and Operations Management,
36(4), 505-530 .
Mashhadi, A.R., Esmaeilian, B., Cade, W., Wiens, K., & Behdad, S.
(2016). Mining consumer experiences of repairing electronics:
product design insights and business lessons learned. Journal of
Cleaner Production, 137, 716-727 .
McNally, R.C., Akdeniz, M.B., & Calantone, R.J. (2011). New product
development processes and new product profitability: Exploring
the mediating role of speed to market and product quality. Journal
of Product Innovation Management, 28(s1), 63-77 .
Nguyen, T., Li, Z., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big
data analytics in supply chain management: a state-of-the-art
literature review. Computers & Operations Research, 98, 254-264 .
Pelleg, D., & Moore, A.W. (2000). X-means: extending K-means with
efficient estimation of the number of clusters. In Icml, Vol. 1, 727-
734. Pereira, M.T., Bento, M.I., Ferreira, L.P., Sá, J.C., & Silva, F. (2019).
Using six sigma to analyse customer satisfaction at the product
design and development stage. Journal of Procedia Manufacturing,
38, 1608-1614 .
Phyu, T.N. (2009). Survey of classification techniques in data mining.
Paper presented at the Proceedings of the International
MultiConference of Engineers and Computer Scientists. March 18 -
20, Hong Kong.
Relich, M. (2021) Product development: state of the art and challenges.
In: Decision Support for Product Development. Computational
Intelligence Methods and Applications. Springer, Cham
Sharma, H., & Kumar, S. (2016). A survey on decision tree algorithms of
classification in data mining. International Journal of Science and
Research (IJSR), 5(4), 2094-2097.
Tama, I.P., Azlia, W., & Hardiningtyas, D. (2015). Development of
customer oriented product design using Kansei engineering and
Kano model: case study of ceramic souvenir. Procedia
Manufacturing, 4, 328-335 .
Tiwari, S., Wee, H.-M., & Daryanto, Y. (2018). Big data analytics in
supply chain management between 2010 and 2016: insights to
industries. Computers & Industrial Engineering, 115, 319-330 .
Um, J., Lyons, A., Lam, H.K., Cheng, T., & Dominguez-Pery, C. (2017).
Product variety management and supply chain performance: a capability perspective on their relationships and competitiveness
implications. International Journal of Production Economics, 187,
15-26 .
Wang, Y., Mo, D.Y., & Tseng, M.M. (2018). Mapping customer needs to
design parameters in the front end of product design by applying
deep learning. CIRP Annals, 67(1), 145-148.
Wirtz, B.W., & Daiser, P. (2018). Business model development: A
customer-oriented perspective. Journal of Business Models, 6(3),
24-44.
Yang , F., & Zhang, H. (2018). The impact of customer orientation on
new product development performance. International Journal of
Productivity and Performance Management, 67(3), 590-607.
Zhan, Y., Tan, K.H., & Huo, B. (2019). Bridging customer knowledge to
innovative product development: a data mining approach.
International Journal of Production Research, 57(20), 6335-6350 .
Zhan, Y., Tan, K.H., Li, Y., & Tse, Y.K. (2018). Unlocking the power of
big data in new product development. Annals of Operations
Research, 1(2), 577-595.